MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.
DE ANCELMO LUIZ GRACELI [BRASILEIRO].
FÍSICA GRACELI DIMENSIONAL.
MECÃNICA GRACELI GERAL - QTDRC.
equação Graceli dimensional relativista tensorial quântica de campos G* = = [ / IFF ] * * = / G / .= / [DR] = = .= + G+ * * = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Teoria | Interação | mediador | Magnitude relativa | Comportamento | Faixa |
---|---|---|---|---|---|
Cromodinâmica | Força nuclear forte | Glúon | 1041 | 1/r7 | 1,4 × 10-15 m |
Eletrodinâmica | Força eletromagnética | Fóton | 1039 | 1/r2 | infinito |
Flavordinâmica | Força nuclear fraca | Bósons W e Z | 1029 | 1/r5 até 1/r7 | 10-18 m |
Geometrodinâmica | Força gravitacional | gráviton | 10 | 1/r2 | infinito |
G* = OPERADOR DE DIMENSÕES DE GRACELI.
DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES DE CAMPOS E ENERGIAS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI, E OUTROS.
*= DIMENSÕES DE GRACELI = ESTADOS FÍSICOS, TIPOS E CARACTERITÍCAS, E POTENCIAIS FÍSICOS DAS ESTRUTURAS, DOS ELEMENTOS QUÍMICOS, ENERGIAS E NÍVEIS DE ENERGIAS, POTENCIAIS DE INTERAÇÕES , CONDUÇÕES, EMISSÕES, DESINTEGRAÇÕES, ABSORÇÕES, E OUTROS.
* *= = [ ] ω , , .=
MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;
MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.
dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.
- [ G* /. ] [ [
G { f [dd]} ´[d] G* . / f [d] G* dd [G]
O ESTADO QUÂNTICO DE GRACELI
- [ G* /. ] [ [ ]
G* = DIMENSÕES DE GRACELI TAMBÉM ESTÁ RELACIONADO COM INTERAÇÕES DE ENERGIAS, QUÂNTICAS, RELATIVÍSTICAS, , E INTERAÇÕES DE CAMPOS.
o tensor energia-momento é aquele de um campo eletromagnético,
= temperatura.
1 / * = = [ ] ω , , * * ψ / [ / ] * / [[Xk,Pl] = i] / ] / [ ] .=
* = = [ ] , [ * * ψ * / [ [Xk,Pl] = i] / ] .=
* * ψ [* * ψ * / [ [Xk,Pl] = i.] / ] / .=
* * ψ / * / [ / ] [[Xk,Pl] = i] . .= ]
* * ψ / * [ [Xk,Pl] = i]/ ] .=
* * ψ * / [ [Xk,Pl] = i] / ] .=
* * ψ * / [ [Xk,Pl] = i]/ / .= ]
* ** [ ] / [[Xk,Pl] = i] / ]] .=
* * [ * [ ] / [ [Xk,Pl] = i] / ] .=
* * ψ [ * [ [Xk,Pl] = i] . / ] / ] .=
* * ψ [ * [ [Xk,Pl] = i]/ / [ / ]] =
* * ψ [ / * [ [Xk,Pl] = i] / / ] / * ψ .=
* * * [ [Xk,Pl] = i] / / ]] / * ψ .=
Com o advento da Mecânica quântica as noções de distinção das partículas subatômicas e da ocupação de estados de energia sofreram sérias reformulações.
No começo do século XX, Boltzmann havia chegado a forma correta da distribuição do número de partículas em função do nível de energia. Mas isso no âmbito da mecânica clássica.
Contudo, principalmente com o surgimento da moderna teoria quântica, o conceito de trajetória se torna seriamente prejudicado, quando não totalmente desnecessário e contraditório.
Uma trajetória implica o deslocamento de uma partícula (idealizada como um ponto ) no espaço e no tempo. Nesse sentido, uma trajetória física corresponderia, na matemática, a uma curva suave e diferenciável, completamente contínua em todos os seus pontos.
Porém, mesmo no trabalho de Einstein sobre o movimento browniano em 1905 (publicado juntamente com outros três trabalhos, a saber: o , o calor específico dos sólidos e a relatividade); esse cientista postulou trajetórias em zig-zag, descontínuas em inúmeros (para não dizer infinitos) pontos para as moléculas e átomos, assim como também as partículas movidas, fossem elas de pó, pólen, dentre outras. Assim, ainda no cenário da física clássica, as trajetórias suaves já eram admissíveis.
Com o entendimento trazido à luz pela interpretação do princípio da incerteza de Heisenberg e pela interpretação estatística da Função de onda dada por foi totalmente por terra a noção de que a partícula tinha trajetória definida.
Assim sendo, não se podem distinguir partículas cujas características sejam idênticas se se aproximam muito uma da outra, porque então não se pode identifica-las pela trajetória, já que para pontos muitos próximos, dependendo da velocidade, os pontos já não são discerníveis. A relação matemática que rege essa indeterminação fundamental é a relação da incerteza de Heisenberg:
onde Xk representa o operador posição, Pl representa o operador Momento linear e o operador identidade.
Dentro desse entendimento, a distribuição de Boltzmann não é mais válida, senão como aproximação. Verificou-se que as distribuições válidas para partículas com carácter manifestamente quântico, são as seguintes:
A primeira é válida para partículas de Spin semi-inteiro( 1/2, 3/2, 5/2...),em unidades de , ou seja, para os férmions, ao passo que a segunda é a distribuição válida para partículas de spin inteiro (0,1,2,3...), ou seja, para os bósons.
Pode-se explicar qualitativa e sucintamente, de forma simplificada, que para os férmions as funções de onda são funções anti-simétricas, ou seja, trocam de sinal perante a troca simultânea das coordenadas espaciais e das coordenadas de spin entre dois férmions.
Comentários
Enviar um comentário